Trans-Regulation of Mouse Meiotic Recombination Hotspots by Rcr1
نویسندگان
چکیده
Meiotic recombination is required for the orderly segregation of chromosomes during meiosis and for providing genetic diversity among offspring. Among mammals, as well as yeast and higher plants, recombination preferentially occurs at highly delimited chromosomal sites 1-2 kb long known as hotspots. Although considerable progress has been made in understanding the roles various proteins play in carrying out the molecular events of the recombination process, relatively little is understood about the factors controlling the location and relative activity of mammalian recombination hotspots. To search for trans-acting factors controlling the positioning of recombination events, we compared the locations of crossovers arising in an 8-Mb segment of a 100-Mb region of mouse Chromosome 1 (Chr 1) when the longer region was heterozygous C57BL/6J (B6) x CAST/EiJ (CAST) and the remainder of the genome was either similarly heterozygous or entirely homozygous B6. The lack of CAST alleles in the remainder of the genome resulted in profound changes in hotspot activity in both females and males. Recombination activity was lost at several hotspots; new, previously undetected hotspots appeared; and still other hotspots remained unaffected, indicating the presence of distant trans-acting gene(s) whose CAST allele(s) activate or suppress the activity of specific hotspots. Testing the activity of three activated hotspots in sperm samples from individual male progeny of two genetic crosses, we identified a single trans-acting regulator of hotspot activity, designated Rcr1, that is located in a 5.30-Mb interval (11.74-17.04 Mb) on Chr 17. Using an Escherichia coli cloning assay to characterize the molecular products of recombination at two of these hotspots, we found that Rcr1 controls the appearance of both crossover and noncrossover gene conversion events, indicating that it likely controls the sites of the double-strand DNA breaks that initiate the recombination process.
منابع مشابه
Cis- and Trans-Acting Elements Regulate the Mouse Psmb9 Meiotic Recombination Hotspot
In most eukaryotes, the prophase of the first meiotic division is characterized by a high level of homologous recombination between homologous chromosomes. Recombination events are not distributed evenly within the genome, but vary both locally and at large scale. Locally, most recombination events are clustered in short intervals (a few kilobases) called hotspots, separated by large intervenin...
متن کاملGenome-Wide Control of the Distribution of Meiotic Recombination
Meiotic recombination events are not randomly distributed in the genome but occur in specific regions called recombination hotspots. Hotspots are predicted to be preferred sites for the initiation of meiotic recombination and their positions and activities are regulated by yet-unknown controls. The activity of the Psmb9 hotspot on mouse Chromosome 17 (Chr 17) varies according to genetic backgro...
متن کاملContrasted Patterns of Crossover and Non-crossover at Arabidopsis thaliana Meiotic Recombination Hotspots
The vast majority of meiotic recombination events (crossovers (COs) and non-crossovers (NCOs)) cluster in narrow hotspots surrounded by large regions devoid of recombinational activity. Here, using a new molecular approach in plants, called "pollen-typing", we detected and characterized hundreds of CO and NCO molecules in two different hotspot regions in Arabidopsis thaliana. This analysis reve...
متن کاملA combination of cis and trans control can solve the hotspot conversion paradox.
There is growing evidence that in a variety of organisms the majority of meiotic recombination events occur at a relatively small fraction of loci, known as recombination hotspots. If hotspot activity results from the DNA sequence at or near the hotspot itself (in cis), these hotspots are expected to be rapidly lost due to biased gene conversion, unless there is strong selection in favor of the...
متن کاملMeiotic recombination strongly influences GC-content evolution in short regions in the mouse genome.
Meiotic recombination is known to influence GC-content evolution in large regions of mammalian genomes by favoring the fixation of G and C alleles and increasing the rate of A/T to G/C substitutions. This process is known as GC-biased gene conversion (gBGC). Until recently, genome-wide measures of fine-scale recombination activity were unavailable in mice. Additionally, comparative studies focu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Biology
دوره 7 شماره
صفحات -
تاریخ انتشار 2009